Harnessing trajectory ensembles for rates, reaction coordinates, and mechanism

Jeremy Copperman
Open Eye Cup, March 10, 2022
A trajectory-based framework to determine the mechanism, dynamics, and control of complex systems.
1. Strategies for rate estimation using weighted ensemble: history-augmented Markov State Models (haMSMs) and optimal binning
 with John Russo, David Aristoff, Gideon Simpson, and Daniel Zuckerman

2. Do cells have transition states which can be leveraged to control cell-state transitions?
 with Young Hwan Chang, Laura Heiser, and Daniel Zuckerman
Q: How can we determine the mechanism, kinetics, and control of Dr. LeBard’s post-conference behavior?

A: Observe one-way (A-to-B) trajectories traversing the reception area to the beverage service

Step 1: Launch non-interacting Dr. LeBard ensemble from A

Step 2: Wait for arrival at B

Thank you to our session organizer, Dr. David LeBard!
Direct trajectory collection: Start at A, wait for B

Long day herding cats, first beverage, linear regime

• mean first-passage time \(T = \frac{\text{distance}}{\text{velocity}} \)
• \(d=10\text{m}, v=1\text{ m/s}, T = 30\text{ seconds} \)
• easy to observe successful trajectories, low variance
Direct trajectory collection: Start at A, wait for B

Long day herding cats, first beverage, linear regime

- mean first-passage time $T = \frac{\text{distance}}{\text{velocity}}$
- $d=10\text{m}$, $v=1\text{ m/s}$, $T = 30\text{ seconds}$
- easy to observe successful trajectories, low variance
Direct trajectory collection: start at A, wait for B

Long day herding cats, infinite beverage, diffusive regime

- Diffusion rate $D = 0.5 \text{ m}^2/\text{s}$
- $d=10\text{m}$, $T = d^2/2D \sim 900$ seconds
- Not too hard to observe successful trajectories, multiple trajectories needed
Direct trajectory collection: start at A, wait for B

- Barrier height h, $T \propto \exp(h)$
- way too long to observe enough successful trajectories
Sampling the one-way ensemble using feedback

- When a Dr. LeBard gets a beverage, 1) take it away, 2) wipe his memory, and 3) feed back to A.
- Steady-state (SS) Dr. Lebard flux (rate constant) at B is 1/mfpt (Hill relation).
- SS density proportional to the sum of all one-way trajectories $\rho_{\text{recycling}}^{\text{SS}}(x) \propto \int \rho_{\text{absorbing}}(x, t) dt$.
Sampling the one-way ensemble using feedback

- Steady-state convergence can be \textit{arbitrarily} faster than the mean first-passage time \bar{t}

Steady-state convergence is not always fast

• metastable states along path slow SS convergence
• Thank you to session co-organizer Dr. Lillian Chong

A

B

d = 10m

reception area

Let's talk about weighted ensemble
Steady-state convergence is not always fast

- Metastable states along path make SS relaxation time same scale as mfpt

When the metastable intermediate has the same energy scale as the barrier...

...the SS relaxation timescale approaches the mfpt $(t/\bar{t} \sim 0.1)$
Weighted ensemble + feedback

• Steady-state convergence may be as computationally expensive as brute force

weighted ensemble trajectory
weights sum to 1 and are split and
merged to sample across bins
without bias

One-way ensemble enforced—trajectories reaching the sink (B)
feed back to the source (A)
Bhatt, D., Zhang, B. W., & Zuckerman, D. M.
JCP (2010).

Steady-state convergence in ~1/10th
of mfpt
haMSM accelerated rate estimation

- history-augmented MSM is just a transition matrix built from A-to-B trajectories
- In the steady-state limit yields the unbiased A-to-B mfpt regardless of bin definitions
- Only requires intrabin local SS convergence

no acceleration in bins with slow internal convergence (4 bins)
40x acceleration of rate estimation (~1000 bins)
Efficient estimation of millisecond-scale protein folding rates

Adhikari, Mostofian, Copperman, Subramanian, Petersen, and Zuckerman. JACS (2019).
Copperman and Zuckerman. JCTC (2020).
haMSM accelerated rate estimation

Improved workflow and tools, integration into WESTPA 2.0, and iterative restarting capability! Talk to John Russo
When is a trajectory ensemble converged?

Gauss’s law for the A-to-B dipole: at steady-state the flux through any surface separating initial state A and final state B is constant.

As steady-state is approached flux profile becomes flatter.

Completely flat flux profile is an absolute measure of SS convergence... but may be overly restrictive.
When is a trajectory ensemble converged?

being stuck looks a lot like convergence/equilibration

Adhikari, Mostofian, Copperman, Subramanian, Petersen, and Zuckerman. JACS (2019).

Let's tackle convergence in MD—need more absolute metrics (beyond leveling off or self-consistency) which can say if a trajectory ensemble is converged.
Controlling variance in A-to-B trajectory ensembles

• Optimal reaction coordinate \(h(\tilde{x}) \) for controlling error is committor-like foliating progress from A-to-B

\[
h(\tilde{x}) = \sigma_t [f(t) - f_{ss}]
\]

\(K \equiv \text{Koopman} \) \hspace{1cm} \text{Aristoff and Zuckerman, SIAM (2020). Aristoff, Copperman, Simpson, Webber, and Zuckerman, man. in prep.}
Controlling variance in A-to-B trajectory ensembles

• Optimal reaction coordinate $h(\hat{x})$ for controlling error is committor-like foliating progress from A-to-B
• Optimal allocation focuses sampling where it is most needed (where $h^2 = \Sigma f(t) - f_{ss}$ due to sampling is high)
• in the low temperature limit this is the uphill side of barriers

Controlling variance in A-to-B trajectory ensembles

- Optimal reaction coordinate $h(\bar{x})$ for controlling error is committor-like foliating progress from A-to-B.
- Optimal allocation focuses sampling where it is most needed (where h variance $\sigma^2 = K h^2 - (Kh)^2$ due to sampling is high).
- In the low temperature limit this is the uphill side of barriers.

Focus sampling on uphill barriers

$K \equiv$ Koopman

1. Strategies for rate estimation using weighted ensemble: history-augmented Markov State Models (haMSMs) and optimal binning
 with John Russo, David Aristoff, Gideon Simpson, and Daniel Zuckerman

2. Do cells have transition states which can be leveraged to control cell state?
 with Young Hwan Chang, Laura Heiser, and Daniel Zuckerman
In the face of massive multiscale complexity...

Can trajectory ensembles provide insight into the control of dysregulated disease cell states?

modified Waddington’s landscape as an A-to-B ensemble

Atoms... are to cells... as cells are to humans
Live-cell imaging provides single-cell trajectories

MCF10A cells in 2D culture, live-cell imaging with cell-cycle reporter, 15-minutes / frame, 48 hours
Live-cell imaging provides single-cell trajectories

MCF10A cells in 2D culture, live-cell imaging with cell-cycle reporter, 15-minutes / frame, 48 hours
Live-cell imaging provides single-cell trajectories

MCF10A cells in 2D culture, live-cell imaging with cell-cycle reporter, 15-minutes / frame, 48 hours
• morphological and motility feature trajectories appear highly stochastic
An observable is a smooth function \(y : M \to \mathbb{R} \). The first problem is this: if, for some dynamical system with time evolution \(\phi_t \), we know the functions \(t \mapsto y(\phi_t(x)) \), \(x \in M \), then how can we obtain information about the original dynamical system (and manifold) from this. The next three theorems deal with this problem. (After the

Theorem 1. Let \(M \) be a compact manifold of dimension \(m \). For pairs \((\phi, y) \), \(\phi : M \to M \) a smooth diffeomorphism and \(y : M \to \mathbb{R} \) a smooth function, it is a generic property that the map \(\Phi_{(\phi, y)} : M \to \mathbb{R}^{2m+1} \), defined by

\[
\Phi_{(\phi, y)}(x) = (y(x), y(\phi(x)), \ldots, y(\phi^m(x)))
\]

is a diffeomorphism between trajectory embedding of observable(s) and full dynamical manifold.

Takens: diffeomorphism between trajectory embedding of observable(s) and full dynamical manifold

Corollary 5. Let \(M \) be a compact manifold consisting of a vector field. For generic such \((X, y, p, \alpha) \) conditions depending on \(X \), \(p \), and \(\alpha \) the set of limit points of the trajectory chunking is a strange attractor.
stochastic trajectory in morphological snapshot space

τ_l = 0 hrs (snapshot)

single-cell trajectory

average flow → Single-cell trajectory
Morphodynamical Trajectory Embedding

Single timepoint morphological features

stochastic trajectory in morphological snapshot space

\[\tau_l = 0 \text{ hrs (snapshot)} \]

systematic trajectory in morphodynamical trajectory space

\[\tau_l = 3.5 \text{ hrs} \]

average flow

morphodynamical trajectory in morphodynamical trajectory space

\[\{ \tilde{X}_t \} = \{ P\tilde{C}A(t_0), P\tilde{C}A(t_1), ..., P\tilde{C}A(t_n) \} \]
Morphodynamical Trajectory Embedding

Improved cell-state representation via trajectory embedding of single-timepoint cell features

Coupled cell clustering and cell cycle dynamics

2D UMAP of trajectory embedding of multiple ligand conditions, $\tau_l=10$ hrs

EGF + TGFB

HGF

epithelial-like G2 – associated cell clusters
collective motility

G1-associated mesenchymal-like
+lamellopodia
+individual motility

log2(nuc/cyto cell-cycle reporter ratio)
Using live-cell trajectories to define cell states and state-specific gene transcription profiles

Paired live-cell imaging and bulk RNA sequencing in 11 ligand conditions
Using live-cell trajectories to define cell states and state-specific gene transcription profiles

Paired live-cell imaging and bulk RNA sequencing in 11 ligand conditions
Using live-cell trajectories to define cell states and state-specific gene transcription profiles

- **EGF**
- **OSM**
- **TGFB**

Paired live-cell imaging and bulk RNA sequencing in 11 ligand conditions

- Live-cell imaging morphodynamical state populations
- **τ_1=10 hrs**

Improved cell state representation via trajectory embedding

- **f_{condition} = \sum_{states} p_{condition} f_{state}**

Decompose bulk RNAseq into state-specific profiles using condition-specific cell-state populations

Null models with random state probabilities

Graphs showing mean correlation and total significance

Trajectory embedding
Cluster formation transition state

cancell dependent cell-cell adhesion: PCDHB10,11,14, 13,9,16,CDH24; PCDHB3,5,4,2,6, DCHS1;DSG1

Positive regulation of lipid kinase activity:
EEF1A2,PRKD1,FGFR3,NOD2, FGR,DGKZ,ATG14,PIK3R4, IRS1,AMBRA1,FGF2,PTK2, CD81,PDGFRB

Can cell transition states be directly targeted to control specific live-cell behaviors? WIP
A-to-B trajectory ensembles...

• ... can be efficiently sampled using feedback
• ... may have slow steady-state convergence but can be accelerated using haMSM reweighting
• ... define optimal reaction coordinates and sampling allocation for minimizing variance in rate estimation
• ... can define the mechanism and control of complex dynamical processes across scales
• ... may provide insight into novel molecular targets and the specific control of observed live-cell behaviors
Acknowledgements

- Daniel Zuckerman
- Laura Heiser
- Young Hwan Chang
- Joe Gray
- Sean Gross

- Heiser Lab
 - Ian Mclean
 - Mark Dane
 - Nicholas Calistri

- Chang Lab
 - Luke Ternes

- Zuckerman Lab
 - John Russo
 - August George
 - Harry Ryu
 - Shelby Santos