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A trajectory-based framework to determine the mechanism, 
dynamics, and control of complex systems.
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1. Strategies for rate estimation using weighted 
ensemble: history-augmented Markov State 
Models (haMSMs) and optimal binning

2. Do cells have transition states which can be 
leveraged to control cell-state transitions? 

folded

unfolded

epithelial

mesenchymal

with John Russo, David Aristoff, Gideon Simpson, and 
Daniel Zuckerman

with Young Hwan Chang, Laura Heiser, and 
Daniel Zuckerman



Relevant applications of one-way A-to-B ensembles
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• Q: How can we determine the mechanism, kinetics, and control of Dr. LeBard’s
post-conference behavior?

• A: Observe one-way (A-to-B) trajectories traversing the reception area to the 
beverage service

• Thank you to our session organizer, Dr. David LeBard!
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Dr. LeBard 
ensemble from A

AB

Step 2: Wait 
for arrival at B



Direct trajectory collection: Start at A, wait for B
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• mean first-passage time T = distance / velocity
• d=10m, v=1 m/s, T = 30 seconds
• easy to observe successful trajectories, low variance

d = 30m

Long day herding cats, first beverage, linear regime
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Direct trajectory collection: start at A, wait for B
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• Diffusion rate D = 0.5 m2/s
• d=10m, T = d2/2D ~ 900 seconds
• Not too hard to observe successful trajectories, multiple trajectories needed

d = 30m
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Long day herding cats, infinite beverage, diffusive regime
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Direct trajectory collection: start at A, wait for B
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• Barrier height h, T ∝ exp(ℎ)
• way too long to observe enough successful trajectories
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Sampling the one-way ensemble using feedback
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• When a Dr. LeBard gets a beverage, 1)take it away, 2) wipe his memory, and 3) feed back to A
• steady-state (SS) Dr. Lebard flux (rate constant) at B is 1/mfpt (Hill relation)
• SS density proportional to the sum of all one-way trajectories 𝜌recycling

𝑠𝑠 (𝑥) ∝

,𝜌absorbing(𝑥 𝑡)𝑑𝑡
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Sampling the one-way ensemble using feedback
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• Steady-state convergence can be arbitrarily faster than the mean first-
passage time ҧ𝑡

d = 10m
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Copperman, J., Aristoff, D., Makarov, D. E., Simpson, G., & Zuckerman, D. M. JCP (2019).

Steady-state convergence in 
~1/10,000th of mfpt



Steady-state convergence is not always fast
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• metastable states along path slow SS convergence
• Thank you to session co-organizer Dr. Lillian Chong
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Steady-state convergence is not always fast
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• metastable states along path make SS relaxation time same scale as mfpt
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Lets talk about 
weighted 
ensemble

AB

When the metastable 
intermediate has the 
same energy scale as 
the barrier…

… the SS 
relaxation 
timescale 
approaches 
the mfpt
(𝑡/ ҧ𝑡~.1)
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Weighted ensemble + feedback

• Steady-state convergence may be as computationally expensive as brute force 

weighted ensemble trajectory 
weights sum to 1 and are split and 
merged to sample across bins 
without bias

One-way ensemble enforced--
trajectories reaching the sink (B) 
feed back to the source (A)
Bhatt, D., Zhang, B. W., & Zuckerman, D. M. 
JCP (2010). WE direct flux

Smoluchowski numerical sol’n
Smoluchowski SS

Steady-state 
convergence in ~1/10th

of mfpt
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haMSM accelerated rate 
estimation
• history-augmented MSM is just a transition 

matrix built from A-to-B trajectories 
• In the steady-state limit yields the unbiased 

A-to-B mfpt regardless of bin definitions
• Suarez, Lettieri, Zwier, Stringer, Subramanian, Chong, and 

Zuckerman, JCTC (2014).

• Only requires intrabin local SS convergence

no acceleration in bins with slow 
internal convergence (4 bins)

40x acceleration of rate 
estimation (~1000 bins)



haMSM accelerated rate estimation

• Efficient estimation of millisecond-scale protein 
folding rates 

Adhikari, Mostofian, Copperman, Subramanian, Petersen, and Zuckerman. 
JACS (2019). 
Copperman and Zuckerman. JCTC (2020).



haMSM accelerated rate estimation

Improved workflow and tools, integration into WESTPA 2.0, and iterative 
restarting capability! Talk to John Russo



When is a trajectory 
ensemble converged?

Gauss’s law for the A-to-B dipole: at steady-
state the flux through any surface separating 
initial state A and final state B is constant

As steady-state is approached flux 
profile becomes flatter

completely flat flux profile is an absolute measure of SS convergence… but may be overly restrictive



When is a trajectory 
ensemble converged?

Lets tackle convergence in MD– need more absolute metrics 
(beyond leveling off or self-consistency) which can say if a 
trajectory ensemble is converged

Adhikari, Mostofian, Copperman, Subramanian, Petersen, and Zuckerman. JACS (2019). 

flux vs. time looks flat… flux profile not converged

**being stuck looks a lot like convergence/equilibration**
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Controlling variance in A-to-B 
trajectory ensembles
• Optimal reaction coordinate ℎ റ𝑥 for controlling 

error is committor-like foliating progress from A-to-B 

ℎ
റ𝑥

=
σ
𝑡[
𝑓
𝑡
−
𝑓 𝑠
𝑠
]

q റ𝑥 A-to-B committor

place bins to foliate A-to-B pathway

𝐾 ≡ Koopman Aristoff and Zuckerman, SIAM (2020).   Aristoff, Copperman, Simpson, Webber, and Zuckerman, man. in prep.
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Controlling variance in A-to-B 
trajectory ensembles
• Optimal reaction coordinate ℎ റ𝑥 for controlling 

error is committor-like foliating progress from A-to-B 
• Optimal allocation focuses sampling where it is most 

needed (where h variance 𝑣2 = 𝐾ℎ2 − (𝐾ℎ)2 due to sampling is high)

• in the low temperature limit this is the uphill side of 
barriers 
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𝐾 ≡ Koopman Aristoff and Zuckerman, SIAM (2020).   Aristoff, Copperman, Simpson, Webber, and Zuckerman, man. in prep.
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naïve bins/allocation

optimal 
bins/allocation 
(~1000x lower 
variance)
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𝐾 ≡ Koopman Aristoff and Zuckerman, SIAM (2020).   Aristoff, Copperman, Simpson, Webber, and Zuckerman, man. in prep.



1. Strategies for rate estimation using weighted 
ensemble: history-augmented Markov State 
Models (haMSMs) and optimal binning

2. Do cells have transition states which can be 
leveraged to control cell state? 

folded

unfolded

epithelial

mesenchymal

with John Russo, David Aristoff, Gideon Simpson, and 
Daniel Zuckerman

with Young Hwan Chang, Laura Heiser, and 
Daniel Zuckerman



In the face of massive multiscale complexity...

Chalmers University of Technology

Can trajectory ensembles 
provide insight into the control 
of dysregulated disease cell 
states?

A

B
modified Waddington’s landscape 
as an A-to-B ensemble

normal cell

cancer cell

metastatic cancer

Atoms…
are to cells… as cells are to humans

Feig, Ann. Rev., (2019).



Live-cell imaging provides 
single-cell trajectories

cell-cycle reporter
G2 G1

nuc/cyto cell-cycle reporter ratio

MCF10A cells in 2D culture, live-cell 
imaging with cell-cycle reporter, 15-
minutes / frame, 48 hours
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Live-cell imaging provides 
single-cell trajectories

cell-cycle reporter
G2 G1

nuc/cyto cell-cycle reporter ratio

MCF10A cells in 2D culture, live-cell 
imaging with cell-cycle reporter, 15-
minutes / frame, 48 hours
• morphological and motility 

feature trajectories appear highly 
stochastic

average flow Single-cell trajectory



Incomplete observations of system

Trajectory embedding (delay embedding) from instantaneous snapshots to 
trajectory chunks of observable(s)

Takens: diffeomorphism between trajectory embedding of 
observable(s) and full dynamical manifold



stochastic trajectory in 
morphological snapshot space

Single 
timepoint
morphological 
features

𝜏𝑙=0 hrs (snapshot)

single-cell trajectory

average flow Single-cell trajectory



𝜏𝑙=3.5 hrs

average flow

Morphodynamical Trajectory
Embedding

systematic trajectory in 
morphodynamical trajectory space

stochastic trajectory in 
morphological snapshot space

Single 
timepoint
morphological 
features

𝜏𝑙=0 hrs (snapshot)

single-cell trajectory

average flow Single-cell trajectory



𝜏𝑙=3.5 hrs

average flow

Morphodynamical Trajectory
Embedding

Systematic trajectories in morpho-
dynamical trajectory space

Increasing trajectory length in the
embedding increases the trajectory 
predictabilitytr
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systematic trajectory in 
morphodynamical trajectory space

stochastic trajectory in 
morphological snapshot space

Single 
timepoint
morphological 
features

Improved cell-state representation via trajectory 
embedding of single-timepoint cell features

𝜏𝑙=0 hrs (snapshot)

Copperman, Gross, Chang, Heiser, and Zuckerman. bioRxiv (2021).

single-cell trajectory



Coupled cell clustering 
and cell cycle dynamics

epithelial-like

G2 –

associated

cell clusters

collective 

motility

log2(nuc/cyto cell-cycle reporter ratio)

G1-associated

mesenchymal-like 

+lamellopodia

+individual motility

2D UMAP of trajectory embedding of 
multiple ligand conditions, 𝜏𝑙=10 hrs

EGF + TGFB

HGF



Using live-cell trajectories to define cell states and state-specific 
gene transcription profiles

EGF                OSM                    TGFB

Paired live-cell imaging and bulk RNA 
sequencing in 11 ligand conditions



Using live-cell trajectories to define cell states and state-specific 
gene transcription profiles

EGF                OSM                    TGFB

states

Condition 1 Condition 2

𝒇𝑎𝑣𝑒𝑟𝑎𝑔𝑒
𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 

𝑠𝑡𝑎𝑡𝑒𝑠
𝑝𝑠𝑡𝑎𝑡𝑒
𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝒇𝑠𝑡𝑎𝑡𝑒

Paired live-cell imaging and bulk RNA 
sequencing in 11 ligand conditions

use single-cell trajectory ensemble to 
perform dynamical clustering

trajectory 
embedding

decompose bulk RNAseq
into state-specific profiles 
using condition-specific 
cell-state populations

𝜏𝑙=10 hrs



Using live-cell trajectories to define cell states and state-specific 
gene transcription profiles

Improved 
cell state 
representation 
via trajectory 
embedding
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EGF                OSM                    TGFB

states

Condition 1 Condition 2

𝒇𝑎𝑣𝑒𝑟𝑎𝑔𝑒
𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 

𝑠𝑡𝑎𝑡𝑒𝑠
𝑝𝑠𝑡𝑎𝑡𝑒
𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝒇𝑠𝑡𝑎𝑡𝑒

Paired live-cell imaging and bulk RNA 
sequencing in 11 ligand conditions

use single-cell trajectory ensemble to 
perform dynamical clustering

trajectory 
embedding

decompose bulk RNAseq
into state-specific profiles 
using condition-specific 
cell-state populations

𝜏𝑙=10 hrs
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null models with random state probabilities

live-cell imaging morphodynamical state populations

trajectory length (hrs) trajectory length (hrs)



Cluster formation transition state
transition state

epithial-like 
cell cluster

mesenchymal-like 
individualized cell
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calcium-
dependent cell-
cell adhesion:
PCDHB10,11,14,
13,9,16,CDH24;
PCDHB3,5,4,2,6,
DCHS1;DSG1

Can cell transition states be directly targeted 
to control specific live-cell behaviors? WIP

Positive regulation of lipid 
kinase activity:
EEF1A2,PRKD1,FGFR3,NOD2
,FGR,DGKZ,ATG14,PIK3R4,
IRS1,AMBRA1,FGF2,PTK2,
CD81,PDGFRB

state-specific gene set enrichment analysis
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A-to-B trajectory ensembles…

• … can be efficiently sampled using feedback
• … may have slow steady-state convergence but can be accelerated using 

haMSM reweighting
• … define optimal reaction coordinates and sampling allocation for 

minimizing variance in rate estimation
• … can define the mechanism and control of complex dynamical processes 

across scales
• … may provide insight into novel molecular targets and the specific control 

of observed live-cell behaviors

A

B
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