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the
A-to-B
dipole

-
A trajectory-based framework to determine the mechanism,

\dynamics, and control of complex systemes.




1. Strategies for rate estimation using weighted .. |
ensemble: history-augmented Markov State |/,
Models (haMSMs) and optimal binning

with John Russo, David Aristoff, Gideon Simpson, and
Daniel Zuckerman

2. Do cells have transition states which can be

leveraged to control cell-state transitions?

with Young Hwan Chang, Laura Heiser, and
Daniel Zuckerman




Relevant applications of one-way A-to-B ensembles

Step 1: Launch ’?"I &

non-interacting
Dr. LeBard
ensemble from A

Step 2: Wait
for arrival at B

reception area

v

entrance

beverage service

B A

d =30m

 Q: How can we determine the mechanism, kinetics, and control of Dr. LeBard'’s
post-conference behavior?

* A: Observe one-way (A-to-B) trajectories traversing the reception area to the
beverage service

e Thank you to our session organizer, Dr. David LeBard!



Direct trajectory collection: Start at A, wait for B

Long day herding cats, first beverage, linear regime

o

entrance

beverage service

B A

d =30m

* mean first-passage time T = distance / velocity
e d=10m, v=1 m/s, T = 30 seconds
e easy to observe successful trajectories, low variance
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* mean first-passage time T = distance / velocity
e d=10m, v=1 m/s, T = 30 seconds
e easy to observe successful trajectories, low variance



Direct trajectory collection: start at A, wait for B

Long day herding cats, infinite beverage, diffusive regime
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e Diffusion rate D = 0.5 m?/s
e d=10m, T =d?%/2D ~ 900 seconds
* Not too hard to observe successful trajectories, multiple trajectories needed



Direct trajectory collection: start at A, wait for B
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* Barrier height h, T &« exp(h)
* way too long to observe enough successful trajectories



Sampling the one-way ensemble using feedback

reception area o

IR,

entrance

A

 When a Dr. LeBard gets a beverage, 1)take it away, 2) wipe his memory, and 3) feed back to A
 steady-state (SS) Dr. Lebard flux (rate constant) at B is 1/mfpt (Hill relation)
e SS density proportional to the sum of all one-way trajectories pﬁgcycling(x) e

f Pabsorbing (x» t)dt

beverage service



Sampling the one-way ensemble using feedback
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» Steady-state convergence can be arbitrarily faster than the mean first-

passage timet
Copperman, J., Aristoff, D., Makarov, D. E., Simpson, G., & Zuckerman, D. M. JCP (2019).



Steady-state convergence is not always fast

Lets talk about
weighted
ensemble
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reception area

entrance

beverage service

d=10m
* metastable states along path slow SS convergence

* Thank you to session co-organizer Dr. Lillian Chong



Steady-state convergence is not always fast

beverage service

When the metastable
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* metastable states along path make SS relaxation time same scale as mfpt



Weighted ensemble + feedbac

y ( m)

x ( m) X ( m)

One-way ensemble enforced--
trajectories reaching the sink (B)

feed back to the source (A)
Bhatt, D., Zhang, B. W., & Zuckerman, D. M.
JCP (2010).

weighted ensemble trajectory
weights sum to 1 and are split and
merged to sample across bins
without bias

e Steady-state convergence may be as computationally expensive as brute force
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haMSM accelerated rate
estimation

* history-augmented MSM is just a transition
matrix built from A-to-B trajectories
* In the steady-state limit yields the unbiased

A-to-B mfpt regardless of bin definitions

e Suarez, Lettieri, Zwier, Stringer, Subramanian, Chong, and
Zuckerman, JCTC (2014).

* Only requires intrabin local SS convergence

no acceleration in bins with slow 40x acceleration of rate
internal convergence (4 bins)

flux (weight/second)

haMSM estimated SS flux with many (finer, >103) microbins
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haMSM accelerated rate estimation

restarted WE
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 Efficient estimation of millisecond-scale protein

folding rates

Adhikari, Mostofian, Copperman, Subramanian, Petersen, and Zuckerman.
JACS (2019).

Copperman and Zuckerman. JCTC (2020).



halMISM accelerated rate estimation

haMSM construction

increasing number of microbins —
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Improved workflow and tools, integration into WESTPA 2.0, and iterative
restarting capability! Talk to John Russo



When is a trajecto ry Gauss'’s law for the A-to-B dipole: at steady-

ensem b|e conve rged I state the flux through any surface separating
' initial state A and final state B is constant
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completely flat flux profile is an absolute measure of SS convergence... but may be overly restrictive



When is a trajectory
ensemble converged?

**pbeing stuck looks a lot like convergence/equilibration**

flux vs. time looks flat... flux profile not converged
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Adhikari, Mostofian, Coppermglr?, Subramanian, Petersen, and Zuckerman. JACS (2019).

Lets tackle convergence in MD— need more absolute metrics
(beyond leveling off or self-consistency) which can say if a
trajectory ensemble is converged

Co-RMSD (A)



Controlling variance in A-to-B
trajectory ensembles

* Optimal reaction coordinate h(x) for controlling = ﬂ%ﬁ

error is committor-like foliating progress from A-to-B 72 = L

q(x) A-to-B committor

K = Koopman Aristoff and Zuckerman, SIAM (2020). Aristoff, Copperman, Simpson, Webber, and Zuckerman, man. in prep.



Controlling variance in A-to-B | ‘
trajectory ensembles |

* Optimal reaction coordinate h(x) for controlling
error is committor-like foliating progress from A-to-B

e Optimal allocation focuses sampling where it is most |
needed (where h variance v2 = Kh2% — (Kh)? due to sampling is high) |

* in the low temperature limit this is the uphill side of
barriers

Focus sampling on uphill barriers
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progress coordinate ql(x) A-to-B committor

K = Koopman Aristoff and Zuckerman, SIAM (2020). Aristoff, Copperman, Simpson, Webber, and Zuckerman, man. in prep.



Controlling variance in A-to-B

trajectory ensembles

* Optimal reaction coordinate h(x) for controlling
error is committor-like foliating progress from A-to-B
e Optimal allocation focuses sampling where it is most |
needed (where h variance v2 = Kh2% — (Kh)? due to sampling is high) |
* in the low temperature limit this is the uphill side of

barriers
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2. Do cells have transition states which can be

leveraged to control cell state?

with Young Hwan Chang, Laura Heiser, and
Daniel Zuckerman




In the face of massive multiscale complexity...
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Feig, Ann. Rev., (2019).

Atoms... ChaImersUniverityofTechnoIogy , ’_ \ j‘ ‘ ‘
eIIs are to humans
Can trajectory ensembles
prOVIde InSIght IﬂJFO the COntrOl modified addington’s landscape
of dysregulated disease cell as an A-to-B ensemble
states?




Live-cell imaging provides  .ceresorer
. . . G2 e G ]
single-cell trajectories

nuc/cyto cell-cycle reporter ratio
Image stack

‘ A. preprocessing
8 ligand
treatments x

15min, 192 images

4 images stacks
per treatment

48hrs, dt

MCF10A cells in 2D culture, live-cell
imaging with cell-cycle reporter, 15-
minutes / frame, 48 hours




Live-cell imaging provides  .ceresorer
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single-cell trajectories

nuc/cyto cell-cycle reporter ratio

C. cell featurization

¢ Image stack B. deep learning based
s
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MCF10A cells in 2D culture, live-cell
imaging with cell-cycle reporter, 15-
minutes / frame, 48 hours




Live-cell imaging provides  .ceresorer

single-cell trajectories

Image stack B. deep learning based

48hrs, dt=15min, 192 images

average flow — Single-cell trajectory

nuc/cyto cell-cycle reporter ratio

C. cell featurization
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umap 2

umap 1
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MCF10A cells in 2D culture, live-cell
imaging with cell-cycle reporter, 15-
minutes / frame, 48 hours

morphological and motility
feature trajectories appear highly
stochastic




An observable is a smooth function y:M —~ IR. The first problem is this : Al

if, for some dynamical system with time evolution ¢ , we know the functions t y(p (X)), -
x € M, then how can we obtain information about the original dynamical system (and E 2
manifold) from this. The next three theorems deal with this problem. (After the g_""'
\E‘: 0
Theorem 1. Let M be a compact manifold of dimension m. For pairs 0,y), ©:M M 2
a smooth diffeomorphism and y:M = R a smooth function, it is a generic property that Ay e | |
2m-+1 200 01 2002

the map @(co,y):M - R » defined Dby Incomplete observations of system

B, ) = (YO, o vl ™)

Trajectory embedding (delay embedding) from instantaneous snapshots to
trajectory chunks of observable(s)

Takens: diffeomorphism between trajectory embedding of
observable(s) and full dynamical manifold

etecting strange attractors in turbulence.

Corollary 5. Let M be a | D

consisting of a vector field
For generic such (X,y,p, &)

conditions depending on X a

the set of limit points of th F].O I'iS ’TaI(EIlS .



Single
timepoint
morphological
features

stochastic trajectory in
morphological snapshot space

— average flow — Single-cell trajectory



Single
timepoint
morphological
features

umap 2

stochastic trajectory in
morphological snapshot space

umap 1
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average flow  — Single-cell trajectory
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stochastic trajectory in

systematic trajectory in
morphological snapshot space

. morphodynamical trajectory space
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Coupled cell clustering
and cell cycle dynamics

EGF + TGFB
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Using live-cell trajectories to define cell states and state-specific
gene transcription profiles

Paired live-cell imaging and bulk RN
sequencing in 11 ligand conditions



Using live-cell trajectories to define cell states and state-specific

gene tra NSCrl pt|on proﬂ |eS use single-cell trajectory ensemble to 2%, decompose bulk RNAseq
perform dynamical clustering
into state-specific profiles
i _ 7;=10 hrs using condition-specific
/ trajectory |2 : cell-state populations
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Paired live-cell imaging and bulk RNA .:.O ik
sequencing in 11 ligand conditions
condition — zpdf



Using live-cell trajectories to define cell states and state-specific

gene transcription profiles
OSM

EGF RIS

TGFB

Paired live-cell imaging and bulk RNA
sequencing in 11 ligand conditions

Bulk RNAseq reconstruction correlation

live-cell imaging morphodynamical state populations

1.00

0.75 4

0.50 A

0.25 1

0.00 4

-0.25

-0.50

-0.75 A

-1.00

J / l 0.400
' ' ¢
| 'I. L.‘ |||
I A A ‘ g 0.350
| [ | 2
—_ | =
N | — @ 0325
.:-"I "‘..‘I .;/;\‘. SR 8 0300
I | ::/ \: o
- A 4 \ 4 @©
\‘\ /J ' 0.250 4
-\ \ \
null models with random state probabilities ~ ****]

e

e

o

e EEEGE

use single-cell trajectory ensemble to
perform dynamical clustering

7;=10 hrs

/

{ trajectory |
embedding |

P ——
¢
P
:/’ ‘h'\
. °
/ ¥
@ et
= | L S
-®- 10 states asymmetric
12 states asymmetric ’
-l- 14 states asymmetric ®
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

trajectory length (hrs)

—— decompose bulk RNAseq
into state-specific profiles
using condition-specific
cell-state populations

O3%A states

Condition 1 Cono{cion 2
Aﬁ A
* A

* o, <

Improved
cell state
representation
via trajectory
embedding

]
~
n

]
w
o

= = = )
N o = e
n (=] n o

total significance (-IoglO(p value)

condition _—_ condltlonf
average Pstate state
states
> -®- 10 states
12 states
-l 14 states
/’.‘\
-
& ,."." i ®
[ |l
L .
4’.'
" ®
0:0 2.‘5 12.5 20‘.0

traJectoryTength (hrs)



state-specific gene set enrichment analysis

Cluster formation transition state o
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A-to-B trajectory ensembles...

* ... can be efficiently sampled using feedback

* ... may have slow steady-state convergence but can be accelerated using
haMSM reweighting

e ... define optimal reaction coordinates and sampling allocation for
minimizing variance in rate estimation

e ... can define the mechanism and control of complex dynamical processes
across scales

... may provide insight into novel molecular targets and the specific control
of observed live-cell behaviors
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