Sampling rare events: folding pathways

Alberto Perez

Mar 10th 2022 — OpenEye CUP XXI

Everything that living things can do can be understood in terms of the jiggling and wigglings of atoms

- Richard Feynman

We can understand MD as jumps between states at certain timescales

1.Esmaeeli, R., Andal, B. & Perez, A. Life 12, 261 (2022).

Sometimes we are interested in the native state but we don't even know what it looks like

Our group works in understanding molecular interactions

Conventional MD is inefficient at exploring the energy landscape

We leverage biophysical data that has been insufficient for structural determination

We incorporate data into simulations through Bayesian inference

$$\underbrace{p(\mathbf{x}|\mathbf{D})}_{p(\mathbf{x}|\mathbf{D})} = \frac{p(\mathbf{D}|\mathbf{x})p(\mathbf{x})}{p(\mathbf{D})} \sim \underbrace{p(\mathbf{D}|\mathbf{x})}_{p(\mathbf{D}|\mathbf{x})} \underbrace{p(\mathbf{x})}_{p(\mathbf{x})}$$

Force Field (prior)

 $p(\mathbf{x}) \sim \exp[-\beta E_{\text{force}}(\mathbf{x})]$ field

MacCallum*, Perez*, & Dill, Proc. Natl. Acad. Sci. U.S.A. 112, 6985–6990 (2015).

Phase transitions lead to local exchanges and limit sampling efficiency

What types of data?

- Sparsely labeled NMR
- Cryo-EM (CryoFold)
- Φ-value analysis
- Chemical Shift Perturbation NMR
- Paramagnetic relaxation enhancement (PRE)
- General knowledge

 Perez, A., Gaalswyk, K., Jaroniec, C. P. & MacCallum, J. L.. Angewandte Chemie Int Ed 58, 6564–6568 (2019) Shekhar, M. et al. Matter 4, 3195–3216 (2021) Lawson, C. L. et al. Nat Methods 18, 156–164 (2021)
 Mondal, A. & Perez, A. Frontiers Mol Biosci 8, 774394 (2021) Mondal, A. et al. Biorxiv 2021.12.31.474671 (2022)

What types of data?

- Sparsely labeled NMR
- Cryo-EM (CryoFold)
- Φ-value analysis
- Chemical Shift Perturbation NMR
- Paramagnetic relaxation enhancement (PRE)
- General knowledge

Perez, A., Gaalswyk, K., Jaroniec, C. P. & MacCallum, J. L.. Angewandte Chemie Int Ed 58, 6564–6568 (2019)
 Shekhar, M. et al. Matter 4, 3195–3216 (2021)
 Lawson, C. L. et al. Nat Methods 18, 156–164 (2021)
 Mondal, A. & Perez, A. Frontiers Mol Biosci 8, 774394 (2021)
 Mondal, A. et al. Biorxiv 2021.12.31.474671 (2022)

Protein Folding problem

- (1) What structure encoded by a sequence
- (2) How do proteins fold that fast (pathways)
- (3) Can we design new proteins

Blind competition events are a great way to validate methodologies

Protein G and L are two proteins with same topology and different folding pathways

G MTYKLILNGKTLKGETTTEAVDAATAEKVFKQYANDNGVDGEWTYDDATKTFTVTE

MEEVTIKANLIFANGSTQTAEFKGTFEKATSEAYAYADTLKKDNGEWTVDVADKGYTLNIKFAG

Protein G and L are two proteins with same topology and different folding pathways

G: ms folder Lmut: ms-s folder L: s folder

Φ-value analysis informs us of residues likely to be making native interactions in the transition state ensemble

$$\phi = rac{\left(\Delta G_W^{TS
ightarrow D} - \Delta G_M^{TS
ightarrow D}
ight)}{\left(\Delta G_W^{N
ightarrow D} - \Delta G_M^{N
ightarrow D}
ight)} = rac{\Delta \Delta G^{TS
ightarrow D}}{\Delta \Delta G^{N
ightarrow D}}$$

Φ-value analysis informs us of residues likely to be making native interactions in the transition state

$$\phi = rac{\left(\Delta G_W^{TS
ightarrow D} - \Delta G_M^{TS
ightarrow D}
ight)}{\left(\Delta G_W^{N
ightarrow D} - \Delta G_M^{N
ightarrow D}
ight)} = rac{\Delta \Delta G^{TS
ightarrow D}}{\Delta \Delta G^{N
ightarrow D}}$$

Mutant residue ordered in TS

Mutant residue disordered in TS

What's the minimal amount of information that will focus sampling and identify folding pathways?

Protein G folds through the second hairpin, through an intermediate

Protein L and its mutant fold through the first hairpin, with no intermediates

MELD captures TSE and intermediates. Is this systematic?

For protein G and G_{mut} we have few folding events

Markov State Models Using Adaptive sampling capture the folding kinetics of Protein G mutant

Peptide Binding

Chemical Shift Perturbation

Data

Intrinsically disordered peptides fold upon binding

ET domain of BRD3

ET is an interaction hub involved in gene regulation and virus entry

Mondal, A. et al. Biorxiv 2021.12.31.474671 (2022)

Peptide Binding

Chemical Shift Perturbation

Data

Intrinsically disordered peptides fold upon binding

ET domain of BRD3

ET is an interaction hub involved in gene regulation and virus entry

Peptides bind ET with a wide range of binding affinities

NOESY (protein-peptide)

NMR

Chemical Shift Perturbation (CSP) (Protein)

Kd ~ 10 nM \longrightarrow ~2-3 months

Kd ~ $10 \,\mu$ M \longrightarrow ~2-3 years

Chemical shift perturbation provides indirect data about where the peptide might bind

Free ET

Allosteric changes? Direct contacts?

Our ensembles sample multiple bound/ misbound states and identify the native bound structure

Competitive binding simulations help us determine binding affinity

Computed binding free energies are in agreement with ITC data

Mondal, A. et al. Biorxiv 2021.12.31.474671 (2022) doi:10.1101/2021.12.31.474671.

We used the lessons learnt from folding routes to design a novel peptide inhibitor

Structural Biology needs physical modeling

- Learn about why/how
- Lead to design principles (smooth landscapes)
- Transferable to new materials
- Simpler and slower folding pathways for protein L over G
- Bridges experiments and atomistic structures

Inanks

M

Ga

Efi

XSEDE

