Squeezing Blood From a Stone: Challenges in Single Particle Cryo-EM Data Processing

Philip T. McGilvray Nanoimaging Services 03/09/22

Sample preparation for single particle Cryo-EM

• The goal of single particle Cryo-EM is to generate micrographs of well dispersed, hydrated, frozen biomolecules

Single Particle Analysis

• The goal of single particle analysis is to align images of a homogenous particles in order to generate high resolution 3D maps

3D Particle Alignment/

Recent technical advances made Cryo-EM a frontline technique for protein stricture determination

(A)

- It has only been possible to routinely solve high resolution structures using Cryo-EM since ~2014
- Facilitated by several technical developments
 - Fast Imaging Direct Electron Detectors
 - Motion Correction
 - Improved analysis software
- Structural analysis of complex biomolecules (somewhat) routine
 - Membrane proteins
 - Large complexes
 - RNA/DNA

T/BS

Single particle analysis deals with a range of challenges from the samples to the computing requirements

- Samples tend to have problems!
 - Can we work through these problems computationally?
 - What methods exist to work through them?
 - Why are they necessary?
- How much is all this going to cost me?
 - Scopes, cameras
 - Hardware/software
 - STORAGE!!!!
 - Connectivity
 - Facilities and maintenance

Single particle analysis deals with a range of challenges from the samples to the computing requirements

- Samples tend to have problems
 - Can we work through these problems computationally?
 - What methods exist to work through them?
 - Why are they necessary?
- How much is all this going to cost me?
 - Scopes, cameras
 - Hardware/software
 - STORAGE!!!!
 - Connectivity
 - Facilities and maintenance

Classification reduces heterogeneity by grouping like particles

- Single particle analysis <u>assumes compositional and conformational homogeneity</u>
- Biomolecules are (importantly!) neither

Classification of particles without alignment can identify subtle heterogeneity

• Alignment driven by homogenous features at the expense of Consensus refinement heterogenous features Classifying previously aligned particles sorts heterogenous features and preserves high signal **Refinement of Class 2** alignments • Frequently done with masking to focus classification on a particular area of the molecule

Refinement of Class 1

Removing high signal regions from the particles can improve alignment of low signal regions

- Masked classification contains alignment to a certain region of a reference
- High signal outside of the mask can prevent good alignment
 - Not enough signal in mask to secure strong alignment
- Can remove the high signal noise from the particles in the data set
 - Makes a same-to-same comparison reference to data, less noise to promote misalignment
- Allows for alignment of very low signal regions

Iterative approaches – masked classification and refinement of signal subtracted particles

Strong preferential orientation reduces signal and biases particle alignment

- Sometimes particles interact strongly with the air-water interface preventing them from tumbling freely
- This reduces the number of particle views available; strong signal in particular orientations
- leads to anisotropic 3D reconstruction and "stretching"

Mild preferential orientation can be overcome computationally

- With <u>mild</u> orientation bias most views are biased but there's a significant number of other views as well
- It is possible to overcome this by:
 - Being generous with the 2D classes you keep
 - Using extensive 3D classification/heterogenous refinement to generate a batch of well aligned particles which show little bias

Refinement of homogenous yet dynamic particles - linear vs adaptive regularization

- After projection alignment and 3D density estimation, filter signal based on global resolution estimations to prevent overfitting to noise
 - Based on FSC
- Biomolecules are frequently dynamic and can't be accurately described by a single resolution
 - Especially membrane proteins
- Single filters degrade potentially highquality density to prevent over fitting poor quality density

Refinement of homogenous yet dynamic particles - linear vs adaptive regularization

- Signal quality differs at different regions of a projection
- By recalculating new regularization parameters for different regions in a map during refinement we can promote high quality alignment in all regions
- Downsides
 - SLOW (2-4x time)
 - Throw more computers at it
 - Frequently unnecessary if your sample is high quality

STRA6-CaM

Single particle analysis deals with a range of challenges from the samples to the computing requirements

- Samples tend to have problems
 - Can we work through these problems computationally?
 - What methods exist to work through them?
 - Why are they necessary?
- How much is all this going to cost me?
 - Scopes, cameras
 - Hardware/software
 - STORAGE!!!!
 - Connectivity
 - Facilities and maintenance

High Performance Computing in CryoEM

- Near real-time image and data processing to support rapid target enablement and med-chem cycles
 - ~2-4 GPUs & ~10-50 CPUs per project
 - Fast local storage and high bandwidth to main storage
- Support for multiple simultaneous users at multiple sites
 - Personal computers and peripherals for each user
- \$100,000's for equipment
 - Servers
 - Licenses

Data Storage in CryoEM

- Combined image storage and data processing
 - ~1.5 TB/day/microscope
 - ~45 TB/mo
 - ~500 TB/year

- Average for different types of microscopes running 24/7
- 1 PB of storage will last ~2 years/microscope
 - Ex: 2 scopes, 1 PB is enough for 1 year
 - NIS has 7 microscopes
- Real time processing roughly doubles the amount of storage taken up by the collection alone

Networking Infrastructure in CryoEM

- High speed and high capacity bandwidth required to support large data transfers
- Up to several TB/day/microscope
- Multiple hardware/software firewalls
- Multiple network switches
- Public internet vs private fiber connections
- Can exceed \$100,000/yr for internet access + private fiber depending on configuration

Continuing Computing Challenges in CryoEM

- Forecasting required capacity for storage and processing
- Response time on complex issues while running 24/7
- Maintaining uptime continuity of services
- Redundancy reducing single points of failure in cost effective manner
- Archives & disaster recovery for PB's of data
- Faster microscopes
- Faster cameras
- Faster software

The best way to deal with your Cryo-EM problems ... give NIS a call

