Squeezing Blood From a Stone: Challenges in Single Particle Cryo-EM Data Processing

Philip T. McGilvray
Nanoimaging Services
03/09/22
Sample preparation for single particle Cryo-EM

- The goal of single particle Cryo-EM is to generate micrographs of well dispersed, hydrated, frozen biomolecules
Single Particle Analysis

- The goal of single particle analysis is to align images of homogenous particles in order to generate high resolution 3D maps.

Micrograph → Particle Picking/2D Classification → 3D Particle Alignment/3D map refinement
Recent technical advances made Cryo-EM a frontline technique for protein stricture determination

- It has only been possible to routinely solve high resolution structures using Cryo-EM since ~2014

- Facilitated by several technical developments
 - Fast Imaging Direct Electron Detectors
 - Motion Correction
 - Improved analysis software

- Structural analysis of complex biomolecules (somewhat) routine
 - Membrane proteins
 - Large complexes
 - RNA/DNA

(Bai et al, TiBS 2015)
Single particle analysis deals with a range of challenges from the samples to the computing requirements

• **Samples tend to have problems!**
 • Can we work through these problems computationally?
 • What methods exist to work through them?
 • Why are they necessary?

• **How much is all this going to cost me?**
 • Scopes, cameras
 • Hardware/software
 • STORAGE!!!!
 • Connectivity
 • Facilities and maintenance
Single particle analysis deals with a range of challenges from the samples to the computing requirements

• Samples tend to have problems
 • Can we work through these problems computationally?
 • What methods exist to work through them?
 • Why are they necessary?

• How much is all this going to cost me?
 • Scopes, cameras
 • Hardware/software
 • STORAGE!!!!
 • Connectivity
 • Facilities and maintenance
Classification reduces heterogeneity by grouping like particles

- Single particle analysis assumes compositional and conformational homogeneity
- Biomolecules are (importantly!) neither

1) Homogenous refinement alone

2) Classification followed by homogenous refinement
Classification of particles without alignment can identify subtle heterogeneity

- Alignment driven by homogenous features at the expense of heterogenous features
- Classifying previously aligned particles sorts heterogenous features and preserves high signal alignments
- Frequently done with masking to focus classification on a particular area of the molecule
Removing high signal regions from the particles can improve alignment of low signal regions

- Masked classification contains alignment to a certain region of a reference

- High signal outside of the mask can prevent good alignment
 - Not enough signal in mask to secure strong alignment

- Can remove the high signal noise from the particles in the data set
 - Makes a same-to-same comparison reference to data, less noise to promote misalignment

- Allows for alignment of very low signal regions

(Bai et al, eLife 2015)
Iterative approaches – masked classification and refinement of signal subtracted particles

(McGilvray et al, eLife 2019)
Strong preferential orientation reduces signal and biases particle alignment

- Sometimes particles interact strongly with the air-water interface preventing them from tumbling freely
- This reduces the number of particle views available; strong signal in particular orientations
- leads to anisotropic 3D reconstruction and “stretching”
Mild preferential orientation can be overcome computationally

- With mild orientation bias most views are biased but there’s a significant number of other views as well
- It is possible to overcome this by:
 - Being generous with the 2D classes you keep
 - Using extensive 3D classification/heterogenous refinement to generate a batch of well aligned particles which show little bias

Tan et al, Nat Methods 2017)
Refinement of homogenous yet dynamic particles - linear vs adaptive regularization

- After projection alignment and 3D density estimation, filter signal based on global resolution estimations to prevent overfitting to noise
 - Based on FSC

- Biomolecules are frequently dynamic and can’t be accurately described by a single resolution
 - Especially membrane proteins

- Single filters degrade potentially high-quality density to prevent over fitting poor quality density

(Punjani et al, Nature 2020)
Refinement of homogenous yet dynamic particles - linear vs adaptive regularization

• Signal quality differs at different regions of a projection

• By recalculating new regularization parameters for different regions in a map during refinement we can promote high quality alignment in all regions

• Downsides
 • SLOW (2-4x time)
 • Throw more computers at it
 • Frequently unnecessary if your sample is high quality

(Punjani et al, Nature 2020)
Single particle analysis deals with a range of challenges from the samples to the computing requirements

• Samples tend to have problems
 • Can we work through these problems computationally?
 • What methods exist to work through them?
 • Why are they necessary?

• How much is all this going to cost me?
 • Scopes, cameras
 • Hardware/software
 • STORAGE!!!!
 • Connectivity
 • Facilities and maintenance
High Performance Computing in CryoEM

• Near real-time image and data processing to support rapid target enablement and med-chem cycles
 • ~2-4 GPUs & ~10-50 CPUs per project
 • Fast local storage and high bandwidth to main storage

• Support for multiple simultaneous users at multiple sites
 • Personal computers and peripherals for each user

• $100,000’s for equipment
 • Servers
 • Licenses
Data Storage in CryoEM

- Combined image storage and data processing
 - ~1.5 TB/day/microscope
 - ~45 TB/mo
 - ~500 TB/year
- Average for different types of microscopes running 24/7
- 1 PB of storage will last ~2 years/microscope
 - Ex: 2 scopes, 1 PB is enough for 1 year
 - NIS has 7 microscopes
- Real time processing roughly doubles the amount of storage taken up by the collection alone
Networking Infrastructure in CryoEM

- High speed and high capacity bandwidth required to support large data transfers
- Up to several TB/day/microscope
- Multiple hardware/software firewalls
- Multiple network switches
- Public internet vs private fiber connections
- Can exceed $100,000/yr for internet access + private fiber depending on configuration
Continuing Computing Challenges in CryoEM

• Forecasting required capacity for storage and processing
• Response time on complex issues while running 24/7
• Maintaining uptime – continuity of services
• Redundancy – reducing single points of failure in cost effective manner
• Archives & disaster recovery for PB’s of data
• Faster microscopes
• Faster cameras
• Faster software
The best way to deal with your Cryo-EM problems ... give NIS a call