

EXPLORING A HYPOTHETICAL GIGALIBRARY FOR NOVEL STRUCTURES AND FUNCTIONS.

Ishika Saha

03/09/2022

Complex Molecules Made Simply

Complex Molecules Made Simply

Identifying Surrogates of Regulatory Proteins

Proc. Natl. Acad. Sci. USA (2008) 105 (8), 3011-3016

Curr Opin Struct Biol. (1995), 1, 103-13 *Structure* (2010) 18, 188–199

Macrocyclic Peptides in Drug Discovery

Sortase A inhibitor, phage display screen ACS Med Chem Lett. (2016) 7(6), 606-611

E6AP Ub ligase inhibitor, RaPID screen

Chem. Biol. (2011) 18 (12), 1562-1570

Nat Chem Biol. (2012) 8(4), 366-374

Alternative Template Based Method

Representative Outcomes

8

97

UCLA

Representative Outcomes

Established Scope Anticipates a Broad Platform

CPMG – Composite Peptide Macrocycle Generator UCLA

Computational generation of an annotated gigalibrary of synthesizable, composite peptidic macrocycles

Ishika Saha^{a,1}, Eric K. Dang^{b,1}, Dennis Svatunek^a, Kendall N. Houk^{a,2}, and Patrick G. Harran^{a,2}

^aDepartment of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095; and ^bDepartment of Computer Science, University of California, Los Angeles, CA 90095 PNAS | October 6, 2020 | vol. 117 | no. 40 | 24679–24690

 2×10^9 macrocycles

Biochemistry

Identifying Heterocycles for CPMG

VEHICLE database

Identifying Heterocycles for CPMG

VEHICLE database

RegioSQM Jaguar

Identifying Heterocycles for CPMG

VEHICLE database

RegioSQM Jaguar

(ωB97X-D-SMD(methanol)/6– 31G(d)) in Gaussian16 RevA.03

Chem. Sci., (2018) 9, 660-665 Int. J. Quantum Chem. (2013) 113, 2110–2142 Phys. Chem. Chem. Phys. (2008) 10, 6615–6620

Computational generation of an annotated gigalibrary of synthesizable, composite peptidic macrocycles

Ishika Saha^{a,1}⁽ⁱ⁾, Eric K. Dang^{b,1}⁽ⁱ⁾, Dennis Svatunek^a, Kendall N. Houk^{a,2}, and Patrick G. Harran^{a,2}⁽ⁱ⁾

^aDepartment of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095; and ^bDepartment of Computer Science, University of California, Los Angeles, CA 90095 PNAS | October 6, 2020 | vol. 117 | no. 40 | 24679–24690

Computational generation of an annotated gigalibrary of synthesizable, composite peptidic macrocycles

Ishika Saha^{a,1}, Eric K. Dang^{b,1}, Dennis Svatunek^a, Kendall N. Houk^{a,2}, and Patrick G. Harran^{a,2}

^aDepartment of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095; and ^bDepartment of Computer Science, University of California, Los Angeles, CA 90095 PNAS | October 6, 2020 | vol. 117 | no. 40 | 24679–24690

Convex Hull Sampling of 10⁴ Structures

UCLA

Chemistry& Biochemistry

Conformational Analysis – ConfBuster++

- 1. Embed molecule, identify backbone and 'cleavable' bonds
- 3. Rotate dihedrals to generate N new conformers

2. Cleave bonds to generate *n* conformers per linearized form

4. Genetic algorithm to retain *M* conformers

0

5. Conformers filtered on energetic and RMSD thresholds

OH

Shape Diversity of CPMG Library

728.8 g/mol

1096.2 g/mol

Shape Diversity of CPMG Library

Chem. Sci., 2020,11 1216-1225

Advantages versus State of the Art

Computationally Guided Application

Clathrin protein Nat Struct Mol Biol (2004) 11, 242-248 GIPr Proc. Natl. Acad. Sci. USA (2007) 104 (35) 13942-13947 MTHFR Biochimie (2021) 183, 100-107

known consensus binding sequence Thr-Leu-Pro-Trp-Asp-Leu-Trp-Thr-Thr 42 residue binding sequence

S-adenosylhomocysteine analogue binders

Computationally Guided Application

Clathrin protein Nat Struct Mol Biol (2004) 11, 242-248 GIPr Proc. Natl. Acad. Sci. USA (2007) 104 (35) 13942-13947 MTHFR Biochimie (2021) 183, 100-107

known consensus binding sequence Thr-Leu-Pro-Trp-Asp-Leu-Trp-Thr-Thr 42 residue binding sequence

S-adenosylhomocysteine analogue binders

Computationally Guided Application

Clathrin protein

Nat Struct Mol Biol (2004) 11, 242-248

GIPr Proc. Natl. Acad. Sci. USA (2007) 104 (35) 13942-13947

MTHFR Biochimie (2021) 183, 100-107

