

Molecular Dynamics Simulation Methods for Macromolecular Crystallography

David Wych CCS-3, CNLS

OpenEye Cup XXI | 3/17/22

LA-UR-22-22059

Molecular Dynamics Simulation Methods for Macromolecular Crystallography

Background

- Me
- Crystallography
- Crystalline Molecular Dynamics

Introduction and Methods

- Previous Work
- MD-MX Analysis Procedure
- Methods

Results

- Density
 Comparison
- Water Building
- Protein
 Remodeling

Discussion

- Implications
- Insights
- Future directions

Appreciation

Background: me

Orbiting OpenEye since ~2012

- B.A. Physics '15 CMC
 - Paul Nerenberg (now @ CSLA)
- Ph.D. Pharmaceutical Sciences '21 UCI
 - David Mobley
 - Mike Wall
- Post-doc LANL (CCS-3/CNLS)
 - Crystallography + Diffuse Scattering
 - Exascale Computing
 - Full-protein + solvent QM/MM

 Responsible for most known structures of proteins

- Responsible for most known structures of proteins
- Models have historically been single structure but there are now various ways of incorporating structural heterogeneity
 - Multi-conformer modeling
 - Ensemble refinement

- Responsible for most known structures of proteins
- Models have historically been single structure but there are now various ways of incorporating structural heterogeneity
 - Multi-conformer modeling
 - Ensemble refinement
- Important to remember: It's just a model
 - Data doesn't come with labels
 - Can fail in regions where density is **difficult to interpret** (protein-solvent interface)

- Responsible for most known structures of proteins
- Models have historically been single structure but there are now various ways of incorporating structural heterogeneity
 - Multi-conformer modeling
 - Ensemble refinement
- Important to remember: It's just a model
 - Data doesn't come with labels
 - Can fail in regions where density is **difficult to interpret** (protein-solvent interface)

Single Structure Refinement

- 2Fo-Fc (1σ)
- Fo-Fc (3σ)
 - pos.
 - neg.

Ensemble Refinement

- 2Fo-Fc (1σ)
- Fo-Fc (3σ)
 - pos.

How can MD help in crystallographic modeling?

- Look enormous... Why crystalline? (why not just do solution single protein?)
 - Allows for direct comparison with crystallographic data
 - Efficiency and sampling
- Crystalline MD methods have improved substantially, in large part thanks to studies of diffuse scattering
- MD simulations can deviate from the crystal structure if not **restrained**

Crystalline Molecular Dynamics (MD)

How can MD help in crystallographic modeling?

- Look enormous... Why crystalline? (why not just do solution single protein?)
 - Allows for direct comparison with crystallographic data
 - Efficiency and sampling
- Crystalline MD methods have improved substantially, in large part thanks to studies of diffuse scattering
- MD simulations can deviate from the crystal structure if not **restrained**

Crystalline Molecular Dynamics (MD)

Previous work: to restrain or not to restrain?

Janowski, P.A., et al. Prot. Sci. (2016); Wall, M.E., IUCrJ 5.2 (2018); Wall, M.E. et al., PNAS (2014)

Dynamics

- Unrestrained simulations
 - Excellent reproduction of B-factors
 - Reproduction and contextualization of the "solvent ring"
 - Reproducing anisotropic diffuse scattering

Wall et al., JACS (2019); Meisburger et al., Nat. Comm. (2020)

Average Structure

- Restrained Simulations:
 - Excellent reproduction of **ordered water structure**
- Consistent degradation ("drift") of the crystal lattice when restraints are relaxed

The MD-MX Analysis Procedure

Methods to improve interpretation and modeling of crystallographic density

Density Comparison

Water Building / Solvent Modeling

Protein Re-modelling

- Calculate the structure factors/density from any component of the system
 - Protein, water, ions, etc.

- Calculate the structure factors/density from any component of the system
 - Protein, water, ions, etc.

.os Alamos

• Average picture over an otherwise inscrutable ensemble of structures

- Calculate the structure factors/density from any component of the system
 - Protein, water, ions, etc.
- Average picture over an otherwise inscrutable ensemble of structures

- Calculate the structure factors/density from any component of the system
 - Protein, water, ions, etc.
- Average picture over an otherwise inscrutable ensemble of structures

- Calculate the structure factors/density from any component of the system
 - Protein, water, ions, etc.
- Average picture over an otherwise inscrutable ensemble of structures
- Spot sensitivity to protonation, "sketchy" parameters, and more

- Protein-first refinement
 - Refine against non-solvent MD density

- Protein-first refinement
 - Refine against non-solvent MD density
 - Refine against total MD density
 - With water picking

- Protein-first refinement
 - Refine against non-solvent MD density
 - Refine against total MD density
 - With water picking
 - Refine against experimental data

- Protein-first refinement
 - Refine against non-solvent MD density
 - Refine against total MD density
 - With water picking
 - Refine against experimental data
- Some obvious problems with refining against *total* structure factors

Good agreement with experimentally-refined model and many more waters

- Reproduces 92% of waters from single structure refinement to within 1Å
 - Recovery degrades progressively as restraints are relaxed

Good agreement with experimentally-refined model and many more waters

- Reproduces 92% of waters from single structure refinement to within 1Å
 - Recovery degrades progressively as restraints are relaxed
- Many additional waters
 - Around the active site, additional waters are supported by Polder density and XR-ND data
 - Many beyond first hydration shell

Single Structure Refinement

Protein-first Refinement

Good agreement with experimentally-refined model and many more waters

- Reproduces 92% of waters from single structure refinement to within 1Å
 - Recovery degrades progressively as restraints are relaxed
- Many additional waters
 - Around the active site, additional waters are supported by Polder density and XR-ND data
 - Many beyond first hydration shell
- ... and lower R-factors
 - Just from a pass through refinement against the MD data

Single Structure Refinement

Protein-first Refinement

	R-work	R-free
Single Structure Refinement	0.1557	0.1838
Protein-first Refinement	0.1328	0.1777

Modeling ordered solvent misinterpreted by ensemble refinement

• Single structure refinement is a mess

- Single structure refinement is a mess
- Ensemble refinement is... better...?

- Single structure refinement is a mess
- Ensemble refinement is... better...?
- MD densities reveal a fairly concerted side chain position, and water or chloride density in the offbackbone spot into which ensemble refinement had placed side chain amino groups

- Single structure refinement is a mess
- Ensemble refinement is... better...?
- MD densities reveal a fairly concerted side chain position, and water or chloride density in the offbackbone spot into which ensemble refinement had placed side chain amino groups
- Modeling with a chloride or water left difference density
- Although not modeled explicitly in the MD, phosphate was present in the crystallization buffer

- Single structure refinement is a mess
- Ensemble refinement is... better...?
- MD densities reveal a fairly concerted side chain position, and water or chloride density in the offbackbone spot into which ensemble refinement had placed side chain amino groups
- Modeling with a chloride or water left difference density
- Although not modeled explicitly in the MD, phosphate was present in the crystallization buffer
- When modeled in, difference density all but disappears

MD ensemble and density pick out two-state multi-conformer model

 Single structure refinement makes a peptide-flip multi conformer model look likely

- Single structure refinement makes a peptide-flip multi conformer model look likely
- Ensemble model is a mess

- Single structure refinement makes a peptide-flip multi conformer model look likely
- Ensemble model is a mess
- MD ensemble and density provide additional justification for the peptide flip

- Single structure refinement makes a peptide-flip multi conformer model look likely
- Ensemble model is a mess
- MD ensemble and density provide additional justification for the peptide flip

- Single structure refinement makes a peptide-flip multi conformer model look likely
- Ensemble model is a mess
- MD ensemble and density provide additional justification for the peptide flip
- B conformation pulled from MD ensemble
- Occupancies are similar to populations form MD ensemble

MD ensemble and density pick out two-state multi-conformer model

• Single structure refinement looks fairly reasonable... a bit of suspicious difference density

- Single structure refinement looks fairly reasonable... a bit of suspicious difference density
- Ensemble refinement model looks even more suspicious....

- Single structure refinement looks fairly reasonable... a bit of suspicious difference density
- Ensemble refinement model looks even more suspicious....
- The MD ensemble shows a clear two-state ensemble

- Single structure refinement looks fairly reasonable... a bit of suspicious difference density
- Ensemble refinement model looks even more suspicious....
- The MD ensemble shows a clear two-state ensemble
- But there's also coordinated waters identified by the MD density

MD ensemble and density pick out two-state multi-conformer model

- Single structure refinement looks fairly reasonable... a bit of suspicious difference density
- Ensemble refinement model looks even more suspicious....
- The MD ensemble shows a clear two-state ensemble
- But there's also coordinated waters identified by the MD density
- We folded the waters in to the multi conformer model
- No difference density remaining in the region (> 3σ)

Los Alamos

The System: Protein Kinase A Catalytic Subunit (PKA-C)

Well-studied kinase: blueprint for the human "kinome"

- In the past, crystalline MD people worked with mostly model systems (e.g. staph nuclease, lysozyme)
- PKA is involved in **metabolism**, **development**, **memory**, and **immune response**.
- Worked with Susan Taylor's Lab (UCSD)
 - Room temperature crystal growth and data collection
 - Single structure and ensemble refinement

Mechanistic insights in to PKA biology from our analysis

Conformational Selection

 Although the regulatory subunit wasn't bound in our crystals, the backbone of the residue still samples the backbone conformation for binding

Allosteric Modulation

- Bound phosphate has not been
 observed before
- May play some roll in allosteric modulation

Progression of Catalysis

- Room temperature crystal growth and data collection
- Unique intermediate catalytic state
- Multiconformer: pre + post catalysis?
- Priming Mg²⁺ for exit from active site

Implications

Simultaneous refinement of protein and solvent

- There are fundamental issues to refining structures against density that is not separable into components
- MD can provide a jumping off point

Fully leveraging MD for crystallography

- Ensemble refinement currently does not seem to be using MD to its fullest potential
- Explicit solvent appears to be important

Future directions

Still a good bit of work to be done in *automating* these methods

- <u>"Easy"</u>
 - Iterative solvation and equilibration
 - Turning up the pressure
 - NVT
 - Density calculations
 - *xtraj.py* (parallel, blazing fast)
 - MD ensembles from trajectories
 - Multi-conformer *identification*
 - Identifying areas of interest

Hard

- Unrestrained/unbiased simulation
 - Force-field people... help
- Multi-conformer modeling
 - protein + solvent
- State of the art experiments (XFEL)
 - Out of equilibrium experiments (e.g. mix-and-inject, temperature jump, etc.)

Appreciation

• OpenEye!

- Mike Wall
- David Mobley
- Phillip Aoto
- Lily Vu
- James Fraser
- Alex Wolff
- Susan Taylor
- The Mobley Lab

DOE Exascale Computing Project

University of California National Lab Fees Research Program

Center for Nonlinear Studies (CNLS) at Los Alamos National Laboratory

